M2201 Exam. 2011 Solutions.

Andrei Yafaev

Section A.

1. (a) [SARKS] Euclidean algorithm:

$$96 = 2 \cdot 40 + 16$$
$$40 = 2 \cdot 16 + 8$$
$$16 = 2 \cdot 8 + 0$$
$$gcd(96, 40) = 8$$

(b) MARKS

$$8 = 40 - 2 \cdot 16 = (-2) \cdot 96 + 5 \cdot 40$$

hence h = -2, k = 5.

(c) 8 MARKS: 6 4 2

Yes, because 8|16. A particular solution is (-4, 10) and the set of all solutions is (-4+5n, 10-12n) where $n \in \mathbb{Z}$.

The equation 96x + 40y = 5 has no solutions because 8 does not divide 5.

2. 6 MARKS 3 + 3

Minimal polynomial: unique monic polynomial m_T satisfying:

- 1. $m_T(T) = 0$.
- 2. For any $f \in k[x]$ such that f(T) = 0, $\deg(g) \ge \deg(m_T)$.

T is diagonalisable if and only if m_T is a product of distinct polynomials of degree one.

3. 6 MARKS 26

- k = R. $m_T(x) = (x-2)^2$. Not diagonalisable.
- $k = \mathbf{F}_2$. $m_T(x) = x^2$. Not diagonalisable.
- $k = \mathbf{F}_5$. $m_T(x) = x 2$. Diagonalisable.

4.

i Two 1×1 blocks.

ii One 2×2 block and one 1×1

iii One 3 × 3 block.

5. MAMARIS

One finds canonical form:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Rank is 3, signature (2,1).

Section B.

6. (a) 7 MARKS

Bézout's identity: there exists a pair of integers (h, k) such that

$$ah + bk = 1$$

Multiplying by c gives:

$$c = ach + bck$$

As b|c, ab|ach. As a|c, ab|bck hence ab|c.

(b) (i), (ii): 10 MARKS 2+5+3

(i). $f \in k[x]$ irreducible if whenever f = gh, g or h is a unit.

(ii).

(a)

TRUE

Suppose f has a root a in k, then x-a divides f and as $\deg(f)>1$, f is reducible. Conversely, suppose f=gh where g and h are not units. As $\deg(f)=2$, $\deg(g)=1$ and g (and hence f) has a root in k.

(b)

FALSE

 $x^4 + 1$ has no roots in R but

$$x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$$

(iii) 8 MARKS 2 + 2 + 2 + 2

$$x^4 - 16 = (x^2 + 4)(x - 2)(x + 2)$$

In C[x]:

$$x^4 - 16 = (x+2i)(x-2i)(x-2)(x+2)$$

Factors irreducible because degree one.

In $\mathbf{R}[x]$:

$$x^4 - 16 = (x^2 + 4)(x - 2)(x + 2)$$

 x^2+4 irreducible because degree two and no roots in ${\bf R},$ other two have degree one hence irreducible.

In $\mathbf{F}_2[x]$:

$$x^4 - 16 = x^4$$

Factors are x - degree one hence irreducible.

In $\mathbf{F}_3[x]$:

$$x^4 - 1 = (x - 1)(x + 1)(x^2 + 1)$$

First two factors irreducible because degree one, the last one is degree 2" and has no roots in \mathbf{F}_3 hence irreducible.

7. (a) 7 MARKS: 3-44

The condition dim $\ker(T_1 - 2\mathrm{Id}) = \dim \ker(T_2 - 2\mathrm{Id})$ implies that JNF for T_1 and T_2 has the same number of blocks.

- (i). TRUE. The JNF for T_1 and T_2 has either two 1×1 or one 2×2 block.
- (ii). FALSE. One can have two 2×2 blocks for T_1 and one 3×3 and one 1×1 for T_2 .
- (b) 12 MARKS: 3 + 3x3 = 0

$$T^{2}(A) = T(A + A^{t}) = (A + A^{t}) + (A + A^{t}) = 2T(A)$$

hence $T^2 = 2T$.

Let
$$f(x) = x^2 - x = x(x-2)$$
.

We proved that f(T) = 0 hence $m_T | f$.

For $k = \mathbb{R}$, \mathbb{C} , $m_T(x) = x(x-2)$ because both 0 and 2 are eigenvalues: T(I) = 2I and for any non-zero anti-symmetric matrix A, T(A) = 0.

(alternatively, one can check that $T \neq 0$ and $T \neq 2Id$)

T is diagonalisable when $k = \mathbf{R}, \mathbf{C}$.

For $k = \mathbf{F}_2$, $m_T(x) = x^2$. It suffices to check that $T \neq 0$. This is true because $T(E_{1,2}) = E_{1,2} + E_{2,1} \neq 0$ (notice that we used n > 1).

When $k = \mathbf{F}_2$, T is not diagonalisable.

When $k = \mathbb{R}$, T is diagonalisable. The eigenvalues are 0 and 2.

The space $V_1(0)$ is the space of antisymmetric matrices, dim $V_1(0) = \frac{n(n-1)}{2}$.

The space $V_1(2)$ is the space of symmetric matrices, dim $V_1(2) = \frac{n(n+1)}{2}$.

It follows that

$$ch_T(x) = x^{\frac{n(n-1)}{2}} (x-2)^{\frac{n(n+1)}{2}}$$

- 8. (a)
 - (i). Bilinear, symmetric, positive definite
 - (ii). Not bilinear: f(2,2) = 4 and f(1,2) + f(1,2) = 6
 - (iii). Bilinear, not symmetric. f(x,1) = 1 but f(1,x) = 0.
 - (b) (i). 9 MARINS 44

(Existence) Let T^* be the linear map represented by \bar{A}^t . We'll prove that it is an adjoint of A.

$$\langle Tv, w \rangle = [v]^t A^t \overline{[w]} = [v]^t \overline{A^t [w]} = \langle v, T^* w \rangle.$$

Notice that here we have used that the basis is orthonormal: we said that the matrix of <, > was the identity. (Uniqueness) Let T^* , T' be two adjoints. Then we have

$$\langle u, (T^* - T')v \rangle = 0.$$

for all $u, v \in V$. In particular, let $u = (T^* - T')v$, then $||(T^* - T')v|| = 0$ hence $T^*(v) = T(v)$ for all $v \in V$. Therefore $T^* = T'$.

(ii). 5 MARKS

Let $w \in W^{\perp}$ and $v \in W$. Then

$$\langle v, T^*(w) \rangle = \langle T(v), w \rangle = 0$$

because, by assumption, $T(v) \in W$ and $w \in W^{\perp}$.

Hence

$$T^*(W^{\perp}) \subset W^{\perp}$$
.

(iv). 6 MARKS

Suppose $T^* = -T$. Let $\lambda \in \mathbf{C}$ be an eigenvalue. There exists a $v \neq 0$ such that $T(v) = \lambda v$.

$$< T(v), v> = \lambda < v, v> = - < v, \lambda v> = -\overline{\lambda} < v, v>$$

As $v \neq 0$, $\langle v, v \rangle \neq 0$ hence $\overline{\lambda} = -\lambda$, it follows that λ is totally imaginary. As an example, take T be the linear map represented by

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

(c) MARK

The matrix is symmetric, hence diagonalisable. Therefore, the minimal polynomial is (x-5)(x+1).